Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
PeerJ ; 12: e17051, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560465

RESUMO

Fishes are hosts for many microorganisms that provide them with beneficial effects on growth, immune system development, nutrition and protection against pathogens. In order to avoid spreading of infectious diseases in aquaculture, prevention includes vaccinations and routine disinfection of eggs and equipment, while curative treatments consist in the administration of antibiotics. Vaccination processes can stress the fish and require substantial farmer's investment. Additionally, disinfection and antibiotics are not specific, and while they may be effective in the short term, they have major drawbacks in the long term. Indeed, they eliminate beneficial bacteria which are useful for the host and promote the raising of antibiotic resistance in beneficial, commensal but also in pathogenic bacterial strains. Numerous publications highlight the importance that plays the diversified microbial community colonizing fish (i.e., microbiota) in the development, health and ultimately survival of their host. This review targets the current knowledge on the bidirectional communication between the microbiota and the fish immune system during fish development. It explores the extent of this mutualistic relationship: on one hand, the effect that microbes exert on the immune system ontogeny of fishes, and on the other hand, the impact of critical steps in immune system development on the microbial recruitment and succession throughout their life. We will first describe the immune system and its ontogeny and gene expression steps in the immune system development of fishes. Secondly, the plurality of the microbiotas (depending on host organism, organ, and development stage) will be reviewed. Then, a description of the constant interactions between microbiota and immune system throughout the fish's life stages will be discussed. Healthy microbiotas allow immune system maturation and modulation of inflammation, both of which contribute to immune homeostasis. Thus, immune equilibrium is closely linked to microbiota stability and to the stages of microbial community succession during the host development. We will provide examples from several fish species and describe more extensively the mechanisms occurring in zebrafish model because immune system ontogeny is much more finely described for this species, thanks to the many existing zebrafish mutants which allow more precise investigations. We will conclude on how the conceptual framework associated to the research on the immune system will benefit from considering the relations between microbiota and immune system maturation. More precisely, the development of active tolerance of the microbiota from the earliest stages of life enables the sustainable establishment of a complex healthy microbial community in the adult host. Establishing a balanced host-microbiota interaction avoids triggering deleterious inflammation, and maintains immunological and microbiological homeostasis.


Assuntos
Microbiota , Peixe-Zebra , Animais , Bactérias , Inflamação , Antibacterianos
2.
Nat Commun ; 15(1): 3431, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654015

RESUMO

The gut microbiota modulates response to hormonal treatments in prostate cancer (PCa) patients, but whether it influences PCa progression remains unknown. Here, we show a reduction in fecal microbiota alpha-diversity correlating with increase tumour burden in two distinct groups of hormonotherapy naïve PCa patients and three murine PCa models. Fecal microbiota transplantation (FMT) from patients with high PCa volume is sufficient to stimulate the growth of mouse PCa revealing the existence of a gut microbiome-cancer crosstalk. Analysis of gut microbial-related pathways in mice with aggressive PCa identifies three enzymes responsible for the metabolism of long-chain fatty acids (LCFA). Supplementation with LCFA omega-3 MAG-EPA is sufficient to reduce PCa growth in mice and cancer up-grading in pre-prostatectomy PCa patients correlating with a reduction of gut Ruminococcaceae in both and fecal butyrate levels in PCa patients. This suggests that the beneficial effect of omega-3 rich diet is mediated in part by modulating the crosstalk between gut microbes and their metabolites in men with PCa.


Assuntos
Transplante de Microbiota Fecal , Fezes , Microbioma Gastrointestinal , Neoplasias da Próstata , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/dietoterapia , Neoplasias da Próstata/microbiologia , Animais , Humanos , Camundongos , Fezes/microbiologia , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/administração & dosagem , Camundongos Endogâmicos C57BL , Ácidos Graxos Insaturados/metabolismo
3.
Microbiol Spectr ; 12(3): e0294323, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38329329

RESUMO

Teleost gill mucus has a highly diverse microbiota, which plays an essential role in the host's fitness and is greatly influenced by the environment. Arctic char (Salvelinus alpinus), a salmonid well adapted to northern conditions, faces multiple stressors in the Arctic, including water chemistry modifications, that could negatively impact the gill microbiota dynamics related to the host's health. In the context of increasing environmental disturbances, we aimed to characterize the taxonomic distribution of transcriptionally active taxa within the bacterial gill microbiota of Arctic char in the Canadian Arctic in order to identify active bacterial composition that correlates with environmental factors. For this purpose, a total of 140 adult anadromous individuals were collected from rivers, lakes, and bays belonging to five Inuit communities located in four distinct hydrologic basins in the Canadian Arctic (Nunavut and Nunavik) during spring (May) and autumn (August). Various environmental factors were collected, including latitudes, water and air temperatures, oxygen concentration, pH, dissolved organic carbon (DOC), salinity, and chlorophyll-a concentration. The taxonomic distribution of transcriptionally active taxa within the gill microbiota was quantified by 16S rRNA gene transcripts sequencing. The results showed differential bacterial activity between the different geographical locations, explained by latitude, salinity, and, to a lesser extent, air temperature. Network analysis allowed the detection of a potential dysbiosis signature (i.e., bacterial imbalance) in fish gill microbiota from Duquet Lake in the Hudson Strait and the system Five Mile Inlet connected to the Hudson Bay, both showing the lowest alpha diversity and connectivity between taxa.IMPORTANCEThis paper aims to decipher the complex relationship between Arctic char (Salvelinus alpinus) and its symbiotic microbial consortium in gills. This salmonid is widespread in the Canadian Arctic and is the main protein and polyunsaturated fatty acids source for Inuit people. The influence of environmental parameters on gill microbiota in wild populations remains poorly understood. However, assessing the Arctic char's active gill bacterial community is essential to look for potential pathogens or dysbiosis that could threaten wild populations. Here, we concluded that Arctic char gill microbiota was mainly influenced by latitude and air temperature, the latter being correlated with water temperature. In addition, a dysbiosis signature detected in gill microbiota was potentially associated with poor fish health status recorded in these disturbed environments. With those results, we hypothesized that rapid climate change and increasing anthropic activities in the Arctic might profoundly disturb Arctic char gill microbiota, affecting their survival.


Assuntos
Lagos , Microbiota , Animais , Baías , Canadá , Disbiose , Brânquias , RNA Ribossômico 16S/genética , Truta/genética , Truta/metabolismo , Água/metabolismo
5.
Front Microbiol ; 14: 1221728, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664118

RESUMO

The larvae of the Black Soldier Fly (Hermetia illucens) provide numerous ecological benefits, leading to significant commercial advancements. These benefits include the bioconversion of low-value waste into high-value feed and soil amendments. Understanding how the bacterial and eukaryotic microbiota communities affect host performance becomes vital for the optimization and specialization of industrial-scale rearing. This study investigates H. illucens-associated microbiota taxonomic composition and dynamics across the developmental cycle (eggs, neonates, larvae, prepupae, and imago X0 to second generation X1) when reared on two substrates: (i) plant-based (Housefly Gainesville diet) and (ii) animal-based (poultry hatchery waste). By using the 16S gene amplicon metataxonomic approach, we found that the results revealed that bacterial microbiota inherited from parents reared on a different substrate may have induced dysbiosis in the progeny. Specifically, the interaction networks of individuals reared on hatchery waste showed a high prevalence of negative interactions and low connectivity. Proteobacteria (39-92%), Firmicutes (4-39%), Bacteroidota (1-38%), and Actinobacteria (1-33%). In animal feed-reared individuals, Firmicutes reached the highest relative abundance (10-80%), followed by Proteobacteria (6-55%), Actinobacteria (1-31%), and Bacteroidota (0-22%). The rearing substrate was the main driver of microbiota composition, while the developmental stage influenced only the whole individual's bacterial microbiota composition. Gut regions were associated with distinct bacterial composition and richness, with diversity decreasing along the digestive tract. For the first time, microeukaryotes of the microbiota other than Fungi were investigated using 18S genetic marker amplicon sequencing with novel blocking primers specific to the Black Soldier Fly. Microeukaryotes are a neglected part of multitrophic microbiota communities that can have similar effects on their hosts as bacterial microbiota. Microeukaryotes from seven orders were identified in black soldier flies, including potential pathogens (e.g., Aplicomplexa group). Nucletmycea were the dominant class throughout development, followed by Holozoa and Stramenophiles. The eukaryote microbiota was structured by developmental stages but not by gut regions. Insights from this study are a stepping stone toward the microbiological optimization of black soldier flies for industrial rearing, highlighting how a synthetic microbiota assembly should be tailored to the rearing environment of the larvae at a targeted developmental stage.

6.
Microbiol Spectr ; : e0275522, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37724869

RESUMO

A number of key factors can structure the gut microbiota of fish such as environment, diet, health state, and genotype. Mesonauta festivus, an Amazonian cichlid, is a relevant model organism to study the relative contribution of these factors on the community structure of fish gut microbiota. M. festivus has well-studied genetic populations and thrives in rivers with drastically divergent physicochemical characteristics. Here, we collected 167 fish from 12 study sites and used 16S and 18S rRNA metabarcoding approaches to characterize the gut microbiome structure of M. festivus. These data sets were analyzed in light of the host fish genotypes (genotyping-by-sequencing) and an extensive characterization of environmental physico-chemical parameters. We explored the relative contribution of environmental dissimilarity, the presence of parasitic taxa, and phylogenetic relatedness on structuring the gut microbiota. We documented occurrences of Nyctotherus sp. infecting a fish and linked its presence to a dysbiosis of the host gut microbiota. Moreover, we detected the presence of helminths which had a minor impact on the gut microbiota of their host. In addition, our results support a higher impact of the phylogenetic relatedness between fish rather than environmental similarity between sites of study on structuring the gut microbiota for this Amazonian cichlid. Our study in a heterogeneous riverscape integrates a wide range of factors known to structure fish gut microbiomes. It significantly improves understanding of the complex relationship between fish, their parasites, their microbiota, and the environment. IMPORTANCE The gut microbiota is known to play important roles in its host immunity, metabolism, and comportment. Its taxonomic composition is modulated by a complex interplay of factors that are hard to study simultaneously in natural systems. Mesonauta festivus, an Amazonian cichlid, is an interesting model to simultaneously study the influence of multiple variables on the gut microbiota. In this study, we explored the relative contribution of the environmental conditions, the presence of parasitic infections, and the genotype of the host on structuring the gut microbiota of M. festivus in Amazonia. Our results highlighted infections by a parasitic ciliate that caused a disruption of the gut microbiota and by parasitic worms that had a low impact on the microbiota. Finally, our results support a higher impact of the genotype than the environment on structuring the microbiota for this fish. These findings significantly improve understanding of the complex relationship among fish, their parasites, their microbiota, and the environment.

7.
Front Physiol ; 14: 1172859, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37485064

RESUMO

The honeybee is an important species for the agri-food and pharmaceutical industries through bee products and crop pollination services. However, honeybee health is a major concern, because beekeepers in many countries are experiencing significant colony losses. This phenomenon has been linked to the exposure of bees to multiple stresses in their environment. Indeed, several biotic and abiotic stressors interact with bees in a synergistic or antagonistic way. Synergistic stressors often act through a disruption of their defense systems (immune response or detoxification). Antagonistic interactions are most often caused by interactions between biotic stressors or disruptive activation of bee defenses. Honeybees have developed behavioral defense strategies and produce antimicrobial compounds to prevent exposure to various pathogens and chemicals. Expanding our knowledge about these processes could be used to develop strategies to shield bees from exposure. This review aims to describe current knowledge about the exposure of honeybees to multiple stresses and the defense mechanisms they have developed to protect themselves. The effect of multi-stress exposure is mainly due to a disruption of the immune response, detoxification, or an excessive defense response by the bee itself. In addition, bees have developed defenses against stressors, some behavioral, others involving the production of antimicrobials, or exploiting beneficial external factors.

8.
Trends Genet ; 39(10): 721-723, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37516623

RESUMO

There is growing evidence that the microbiome influences host phenotypic variation. Incorporating information about the holobiont - the host and its microbiome - into genomic prediction models may accelerate genetic improvements in farmed animal populations. Importantly, these models must account for the indirect effects of the host genome on microbiome-mediated phenotypes.


Assuntos
Microbiota , Animais , Microbiota/genética , Genoma/genética , Genômica , Fenótipo , Modelos Genéticos
9.
Microbiol Spectr ; 11(3): e0479322, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37199657

RESUMO

The Amazon River basin sustains dramatic hydrochemical gradients defined by three water types: white, clear, and black waters. In black water, important loads of allochthonous humic dissolved organic matter (DOM) result from the bacterioplankton degradation of plant lignin. However, the bacterial taxa involved in this process remain unknown, since Amazonian bacterioplankton has been poorly studied. Its characterization could lead to a better understanding of the carbon cycle in one of the Earth's most productive hydrological systems. Our study characterized the taxonomic structure and functions of Amazonian bacterioplankton to better understand the interplay between this community and humic DOM. We conducted a field sampling campaign comprising 15 sites distributed across the three main Amazonian water types (representing a gradient of humic DOM), and a 16S rRNA metabarcoding analysis based on bacterioplankton DNA and RNA extracts. Bacterioplankton functions were inferred using 16S rRNA data in combination with a tailored functional database from 90 Amazonian basin shotgun metagenomes from the literature. We discovered that the relative abundances of fluorescent DOM fractions (humic-, fulvic-, and protein-like) were major drivers of bacterioplankton structure. We identified 36 genera for which the relative abundance was significantly correlated with humic DOM. The strongest correlations were found in the Polynucleobacter, Methylobacterium, and Acinetobacter genera, three low abundant but omnipresent taxa that possessed several genes involved in the main steps of the ß-aryl ether enzymatic degradation pathway of diaryl humic DOM residues. Overall, this study identified key taxa with DOM degradation genomic potential, the involvement of which in allochthonous Amazonian carbon transformation and sequestration merits further investigation. IMPORTANCE The Amazon basin discharge carries an important load of terrestrially derived dissolved organic matter (DOM) to the ocean. The bacterioplankton from this basin potentially plays important roles in transforming this allochthonous carbon, which has consequences on marine primary productivity and global carbon sequestration. However, the structure and function of Amazonian bacterioplanktonic communities remain poorly studied, and their interactions with DOM are unresolved. In this study, we (i) sampled bacterioplankton in all the main Amazon tributaries, (ii) combined information from the taxonomic structure and functional repertory of Amazonian bacterioplankton communities to understand their dynamics, (iii) identified the main physicochemical parameters shaping bacterioplanktonic communities among a set of >30 measured environmental parameters, and (iv) characterized how bacterioplankton structure varies according to the relative abundance of humic compounds, a by-product from the bacterial degradation process of allochthonous DOM.


Assuntos
Matéria Orgânica Dissolvida , Água , RNA Ribossômico 16S/genética , Organismos Aquáticos , Carbono/análise
10.
Microorganisms ; 11(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36838503

RESUMO

Environmental stressors can disrupt the relationship between the microbiota and the host and lead to the loss of its functions. Among them, bacterial infection caused by Aeromonas salmonicida, the causative agent of furunculosis, results in high mortality in salmonid aquaculture. Here, rainbow trout were exposed to A. salmonicida achromogenes and its effects on the taxonomic composition and structure of the microbiota was assessed on different epithelia (gills, skin, and caudal fin) at 6 and 72 h post-infection (hpi) using the V1-V3 region of the 16S rRNA sequencing. Moreover, the infection by the pathogen and immune gene responses were evaluated in the head kidney by qPCR. Our results suggested that α-diversity was highly diverse but predominated by a few taxa while ß-diversity was affected very early by infection in the gills after 6 h, subsequently affecting the microbiota of the skin and caudal fin. A dysbiosis of the microbiota and an increase in genera known to be opportunistic pathogens (Aeromonas, Pseudomonas) were also identified. Furthermore, an increase in pro-inflammatory cytokines and virulence protein array (vapa) was observed in trout head kidney as soon as 6 hpi and remained elevated until 72 hpi, while the anti-inflammatory genes seemed repressed. This study suggests that the infection by A. salmonicida achromogenes can alter fish microbiota of gills in the few hours post-infection. This result can be useful to develop a non-invasive technique to prevent disease outbreak in aquaculture.

11.
Sci Rep ; 13(1): 2396, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765081

RESUMO

Black soldier fly larvae (BSF, Hermetia illucens) have gained much attention for their industrial use as biowaste recyclers and as a new source of animal proteins. The functional effect that microbiota has on insect health and growth performance remains largely unknown. This study clarifies the role of microbiota in BSF ontogeny by investigating the differential genomic expression of BSF larvae in axenic conditions (i.e., germfree) relative to non-axenic (conventional) conditions. We used RNA-seq to measure differentially expressed transcripts between axenic and conventional condition using DESeq2 at day 4, 12 and 20 post-hatching. Gene expression was significantly up or down-regulated for 2476 transcripts mapped in gene ontology functions, and axenic larvae exhibited higher rate of down-regulated functions. Up-regulated microbiota-dependant transcriptional gene modules included the immune system, the lipid metabolism, and the nervous system. Expression profile showed a shift in late larvae (day 12 and 20), exposing a significant temporal effect on gene expression. These results provide the first evidence of host functional genes regulated by microbiota in the BSF larva, further demonstrating the importance of host-microbiota interactions on host ontology and health. These results open the door to optimization of zootechnical properties in alternative animal protein production, biowaste revalorization and recycling.


Assuntos
Dípteros , Microbiota , Animais , Larva , Ração Animal/análise , Dípteros/fisiologia , Microbiota/genética , Metabolismo dos Lipídeos
12.
Microbiol Spectr ; 10(6): e0206422, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36445161

RESUMO

Fish bacterial communities provide functions critical for their host's survival in contrasting environments. These communities are sensitive to environmental-specific factors (i.e., physicochemical parameters, bacterioplankton), and host-specific factors (i.e., host genetic background). The relative contribution of these factors shaping Amazonian fish bacterial communities is largely unknown. Here, we investigated this topic by analyzing the gill bacterial communities of 240 wild flag cichlids (Mesonauta festivus) from 4 different populations (genetic clusters) distributed across 12 sites in 2 contrasting water types (ion-poor/acidic black water and ion-rich/circumneutral white water). Transcriptionally active gill bacterial communities were characterized by a 16S rRNA metabarcoding approach carried on RNA extractions. They were analyzed using comprehensive data sets from the hosts genetic background (Genotyping-By-Sequencing), the bacterioplankton (16S rRNA) and a set of 34 environmental parameters. Results show that the taxonomic structure of 16S rRNA gene transcripts libraries were significantly different between the 4 genetic clusters and also between the 2 water types. However, results suggest that the contribution of the host's genetic background was relatively weak in comparison to the environment-related factors in structuring the relative abundance of different active gill bacteria species. This finding was also confirmed by a mixed-effects modeling analysis, which indicated that the dissimilarity between the taxonomic structure of bacterioplanktonic communities possessed the best explicative power regarding the dissimilarity between gill bacterial communities' structure, while pairwise fixation indexes (FST) from the hosts' genetic data only had a weak explicative power. We discuss these results in terms of bacterial community assembly processes and flag cichlid fish ecology. IMPORTANCE Host-associated microbial communities respond to factors specific to the host physiology, genetic backgrounds, and life history. However, these communities also show different degrees of sensitivity to environment-dependent factors, such as abiotic physico-chemical parameters and ecological interactions. The relative importance of host- versus environment-associated factors in shaping teleost bacterial communities is still understudied and is paramount for their conservation and aquaculture. Here, we studied the relative importance of host- and environment-associated factors structuring teleost bacterial communities using gill samples from a wild Amazonian teleost model (Mesonauta festivus) sampled in contrasting habitats along a 1500 km section of the Amazonian basin, thus ensuring high genetic diversity. Results showed that the contribution of the host's genetic background was weak compared to environment-related bacterioplanktonic communities in shaping gill bacterial assemblages, thereby suggesting that our understanding of teleost microbiome assembly could benefit from further studies focused on the ecological interplay between host-associated and free-living communities.


Assuntos
Brânquias , Microbiota , Animais , RNA Ribossômico 16S/genética , Brânquias/química , Brânquias/microbiologia , Peixes/genética , Peixes/microbiologia , Microbiota/fisiologia , Água , Genômica , Bactérias/genética
13.
Mol Ecol ; 31(18): 4656-4671, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35729748

RESUMO

Associations between host genotype and host-associated microbiomes have been shown in a variety of animal clades, but studies on teleosts mostly show weak associations. Our study aimed to explore these relationships in four sympatric Serrasalmidae (i.e., piranha) teleosts from an Amazonian lake, using data sets from the hosts genomes (single nucleotide polymorphisms from genotyping by sequencing), skin and gut microbiomes (16S rRNA gene metataxonomics) and diets (COI metabarcoding) from the same fish individuals. First, we investigated whether there were significant covariations of microbiome and fish genotypes at the inter- and intraspecific levels. We also assessed the extent of covariation between Serrasalmidae diet and microbiome, to isolate genotypic from dietary effects on community structure. We observed a significant covariation of skin microbiomes and host genotypes at interspecific (R2  = 24.4%) and intraspecific (R2  = 6.2%) levels, whereas gut microbiomes correlated poorly with host genotypes. Serrasalmidae diet composition was significantly correlated to fish genotype only at the interspecific level (R2  = 5.4%), but did not covary with gut microbiome composition (Mantel R = -.04). Second, we investigated whether the study of interspecific differentiation could benefit from considering host-associated microbial communities in addition to host genotypes. By using a nonmetric multidimensional scaling (NMDS) ordination-based approach, we observed that ordinations from skin- and gut species-specific bacterial biomarkers identified through a random forest algorithm could significantly increase the average interspecific differentiation detected through host genotype data alone. Although future studies encompassing additional species and environments are needed, our results suggest Serrasalmidae microbiomes could constitute an insightful trait to be considered when studying the interspecific differences between members of this clade.


Assuntos
Caraciformes , Microbioma Gastrointestinal , Microbiota , Animais , Caraciformes/genética , Microbioma Gastrointestinal/genética , Genômica , Microbiota/genética , RNA Ribossômico 16S/genética
14.
Microorganisms ; 10(3)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35336069

RESUMO

Including probiotics in honeybee nutrition represents a promising solution for mitigating diseases, and recent evidence suggests that various microbes possess mechanisms that can bioremediate environmental pollutants. Thus, the use of probiotics capable of degrading pesticides used in modern agriculture would help to both reduce colony losses due to the exposure of foragers to these toxic molecules and improve honeybee health and wellbeing globally. We conducted in vitro experiments to isolate and identify probiotic candidates from bacterial isolates of the honeybee gut (i.e., endogenous strains) according to their ability to (i) grow in contact with three sublethal concentrations of the pesticide clothianidin (0.15, 1 and 10 ppb) and (ii) degrade clothianidin at 0.15 ppb. The isolated bacterial strains were indeed able to grow in contact with the three sublethal concentrations of clothianidin. Bacterial growth rate differed significantly depending on the probiotic candidate and the clothianidin concentration used. Clothianidin was degraded by seven endogenous honeybee gut bacteria, namely Edwardsiella sp., two Serratia sp., Rahnella sp., Pantoea sp., Hafnia sp. and Enterobacter sp., measured within 72 h under in vitro conditions. Our findings highlight that endogenous bacterial strains may constitute the base material from which to develop a promising probiotic strategy to mitigate the toxic effects of clothianidin exposure on honeybee colony health.

15.
Microorganisms ; 9(11)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34835409

RESUMO

Pesticides are increasing honeybee (Apis mellifera) death rates globally. Clothianidin neonicotinoid appears to impair the microbe-immunity axis. We conducted cage experiments on newly emerged bees that were 4-6 days old and used a 16S rRNA metataxonomic approach to measure the impact of three sublethal clothianidin concentrations (0.1, 1 and 10 ppb) on survival, sucrose syrup consumption and gut microbiota community structure. Exposure to clothianidin significantly increased mortality in the three concentrations compared to controls. Interestingly, the lowest clothianidin concentration was associated with the highest mortality, and the medium concentration with the highest food intake. Exposure to clothianidin induced significant variation in the taxonomic distribution of gut microbiota activity. Co-abundance network analysis revealed local dysbiosis signatures specific to each gut section (midgut, ileum and rectum) were driven by specific taxa. Our findings confirm that exposure to clothianidin triggers a reshuffling of beneficial strains and/or potentially pathogenic taxa within the gut, suggesting a honeybee's symbiotic defense systems' disruption, such as resistance to microbial colonization. This study highlights the role of weak transcriptional activity taxa in maintaining a stable honeybee gut microbiota. Finally, the early detection of gut dysbiosis in honeybees is a promising biomarker in hive management for assessing the impact exposure to sublethal xenobiotics.

16.
Microorganisms ; 9(9)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34576827

RESUMO

In supportive breeding programs for wild salmon populations, stocked parr experience higher mortality rates than wild ones. Among other aspects of phenotype, the gut microbiota of artificially raised parr differs from that of wild parr before stocking. Early steps of microbiota ontogeny are tightly dependent upon environmental conditions, both of which exert long-term effects on host physiology. Therefore, our objective was to assess to what extent the resilience capacity of the microbiota of stocked salmon may prevent taxonomic convergence with that of their wild congeners after two months in the same natural environment. Using the 16S SSU rRNA marker gene, we tested the general hypothesis that environmental conditions during the very first steps of microbiota ontogeny imprint a permanent effect on later stages of microbiota recruitment. Our results first showed that gut microbiota composition of stocked and wild parr from the same genetic population, and sharing the same environment, was dependent on the early rearing environment. In contrast, skin microbiota in stocked individuals converged to that of wild individuals. Taxonomic composition and co-occurrence network analyses suggest an impairment of wild bacteria recruitment and a higher instability for the gut microbiota of stocked parr. This study is the first to demonstrate the long-term effect of early microbiota ontogeny in artificial rearing for natural population conservation programs, raising the need to implement microbial ecology.

17.
mSphere ; 6(2)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827912

RESUMO

Shannon's entropy is a popular alpha diversity metric because it estimates both richness and evenness in a single equation. However, since its value is dependent on both those parameters, there is theoretically an infinite number of richness/evenness value combinations translating into the same index score. By decoupling both components measured by Shannon's entropy, two communities having identical indices can be differentiated by mapping richness and evenness coordinates on a scatter plot. In such graphs, confidence ellipses would allow testing significant differences between groups of samples. Multivariate statistical tests such as permutational multivariate analysis of variance (PERMANOVA) can be performed on distance matrices calculated from richness and evenness coordinates and detect statistically significant differences that would have remained unforeseen otherwise. Therefore, plotting richness and evenness on two-dimensional (2D) graphs gives a more thorough understanding of how alpha diversity differs between groups of samples.


Assuntos
Biodiversidade , Biota , Entropia , Conceitos Matemáticos
18.
Anim Microbiome ; 3(1): 3, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33499999

RESUMO

BACKGROUND: Disentangling the dynamics of microbial interactions within communities improves our comprehension of metacommunity assembly of microbiota during host development and under perturbations. To assess the impact of stochastic variation of neutral processes on microbiota structure and composition under disturbance, two types of microbial habitats, free-living (water), and host-associated (skin and gut) were experimentally exposed to either a constant or gradual selection regime exerted by two sublethal cadmium chloride dosages (CdCl2). Yellow Perch (Perca flavescens) was used as a piscivorous ecotoxicological model. Using 16S rDNA gene based metataxonomics, quantitative diversity metrics of water, skin and gut microbial communities were characterized along with development and across experimental conditions. RESULTS: After 30 days, constant and gradual selection regimes drove a significant alpha diversity increase for both skin and gut microbiota. In the skin, pervasive negative correlations between taxa in both selection regimes in addition to the taxonomic convergence with the environmental bacterial community, suggest a loss of colonisation resistance resulting in the dysbiosis of yellow perch microbiota. Furthermore, the network connectivity in gut microbiome was exclusively maintained by rare (low abundance) OTUs, while most abundant OTUs were mainly composed of opportunistic invaders such as Mycoplasma and other genera related to fish pathogens such as Flavobacterium. Finally, the mathematical modelling of community assembly using both non-linear least squares models (NLS) based estimates of migration rates and normalized stochasticity ratios (NST) based beta-diversity distances suggested neutral processes drove by taxonomic drift in host and water communities for almost all treatments. The NLS models predicted higher demographic stochasticity in the cadmium-free host and water microbiomes, however, NST models suggested higher ecological stochasticity under perturbations. CONCLUSIONS: Neutral models agree that water and host-microbiota assembly promoted by rare taxa have evolved predominantly under neutral processes with potential involvement of deterministic forces sourced from host filtering and cadmium selection. The early signals of perturbations in the skin microbiome revealed antagonistic interactions by a preponderance of negative correlations in the co-abundance networks. Our findings enhance our understanding of community assembly host-associated and free-living under anthropogenic selective pressure.

19.
Microorganisms ; 8(11)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138319

RESUMO

Coral microbiomes are critical to holobiont health and functioning, but the stability of host-microbial interactions is fragile, easily shifting from eubiosis to dysbiosis. The heat-induced breakdown of the symbiosis between the host and its dinoflagellate algae (that is, "bleaching"), is one of the most devastating outcomes for reef ecosystems. Yet, bleaching tolerance has been observed in some coral species. This review provides an overview of the holobiont's diversity, explores coral thermal tolerance in relation to their associated microorganisms, discusses the hypothesis of adaptive dysbiosis as a mechanism of environmental adaptation, mentions potential solutions to mitigate bleaching, and suggests new research avenues. More specifically, we define coral bleaching as the succession of three holobiont stages, where the microbiota can (i) maintain essential functions for holobiont homeostasis during stress and/or (ii) act as a buffer to mitigate bleaching by favoring the recruitment of thermally tolerant Symbiodiniaceae species (adaptive dysbiosis), and where (iii) environmental stressors exceed the buffering capacity of both microbial and dinoflagellate partners leading to coral death.

20.
Microorganisms ; 8(8)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751209

RESUMO

Microbial symbionts inhabiting the honeybee gut (i.e., gut microbiota) are essential for food digestion, immunity, and gut protection of their host. The taxonomic composition of the gut microbiota is dynamic throughout the honeybee life cycle and the foraging season. However, it remains unclear how drastic changes occurring in winter, such as food shortage and cold weather, impact gut microbiota dynamics. The objective of this study was to characterize the gut microbiota of the honeybee during the overwintering period in a northern temperate climate in Canada. The microbiota of nine honeybee colonies was characterized by metataxonomy of 16S rDNA between September 2017 and June 2018. Overall, the results showed that microbiota taxonomic composition experienced major compositional shifts in fall and spring. From September to November, Enterobacteriaceae decreased, while Neisseriaceae increased. From April to June, Orbaceae increased, whereas Rhizobiaceae nearly disappeared. Bacterial diversity of the gut microbiota decreased drastically before and after overwintering, but it remained stable during winter. We conclude that the honeybee gut microbiota is likely to be impacted by the important meteorological and dietary changes that take place before and after the overwintering period. Laboratory trials are needed to determine how the observed variations affect the honeybee health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA